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Abstract

Je list eleven research papers written under the

' Grant, of which five have been published in scientific
periodicals, three have been accepted ror publication and
three have been submitted and under considceration. This
year I report that we find a good approximation to the number
of non-geparable spargely-edged labelled graphs, relevant
to ayplications in statistical mechanies, I also study the
enumeration of sm.oth labelled zrarhs, where I obtain
an exact form for the exponential generating function,
find the differential equation it satisfies and a combinatorial
interpretation of this equation and finally study the
sparsely edged case. 1 remark on a surprisingly c}ose
relationship between the results for the sparsely edaged
case of the non-~separable and the smooth graphs. I revort
a little further on the enumeration of bipartite graphs,

labelled and unlabelled, and finally list a few of the

further problems that I hope to investigate.
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The number of large non-separ-ble labelleu graphs

1. in (n,q) graph is a graph on n labelled
points and q lines. A non-separable zraph (or block)
is a connected graph which cannot be disconnected by
the renoval of one point and its adjacent line=z=, .e
write u(n,q) for the number of non-separaile graphs
on n labelled points and q lines and are concerned to
find an asymptotic approximation to u({n,n+x) as n— <o
and k—> oo with k = o(n¥). The determination of such
an approximation is related to problems in statistical
mechanics (see [51), [B6], esp. p.141, and (z1).

ie write

U = 2{: u(n,n+k)x%/nt
m

for the exponential generating function (e.z.f.)

of u{n,n+k). In [313] I found a recurrence differe: tial
equation which enabled one, in t-.eory, to determine

UP for successive k. The work could be carried out on
a computer and would give one the coefficients in the
expression
%
_ -3k ~3k+1 s
U =D ® c P * Z CpsP
$z=3ks?

where qﬁ:: 1-X. ilence one coculd find an expression

for u(n,n+k)/n! in terms of binomial coefficients.

2ut this expr:ssion contains 3x+3 terms ana the exact
evaluation of the coefficients rapidly e hausts the menory
o7 the computer, so this procedure is not practicable

for any but small k, nor would tie result be very
informative for such k. However I can use the

recurrenec differential equation first to prove t:at

5
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-3k -3;:+1J -3k
[b}:¢ - ck¢ n S [U}']ns [b]:¢ Jn’ (1.1)
wrere [F] denotes the coeificient of X"/n! in the
power series F, and secondly to find recurrence formulae
for the sequences ibk} and icég. Je can use these to

s1ow that ¢, = (3k+1)kbk/(3k-1) and so that, for k2 2,

"
b, (n+3k=2) 1 (n=3k%42k=1) € (3x=1) tu(n,n+k)

£ by (n+3k=1)! (1.2)

ile can transform the recurrence satisfied by the
sequence {bk} into a particular case of the quadratic
recurrence studied by Ctein and Everett EBS] and solved
by me [Aﬁ]. iy solution leads to the result that

by, ~r aq(3/2)%(ie=1) 1 (1.3)

28 k> , wnere a, = 0,058538... (the value of a,
obtained by computing, using a theor:zm of [AB] to maice
the work manageavle). .Je have then

u(n,nek) o a(3/2) (=1 1 (043k=1) 1/ (3k=1)1  (1.4)

1
2s n,k = 29 with k = o(n®). From this, using
Stirling's formula, we can decuce that

u(n,n+k)‘naa1(677)%nn+3k—#e2k'n(1sk2)-k. (1.5)
The inequalities (1.2), very precise for k = o(nZ),
give some ~round for optimism over their use in the
applications mentioned above,

@ can go a little further and show that, if
k<(1-£)(4n)%,wiere € is a positive number
independent of k and n, then log u(n,n+k) has

the asymptotic aprroximation corresponding to (1.5)
with error 0(1). )




‘The details o° this work are embodied in
Appendix 1 of this report, which is a pajer [AQ]
wiiich has been submitted for possible publication
in the Journal of Graph Theory.
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Jnumeration of smooth labelled oraphs

2., This section is an expansion of §5 of the _econd
annual report, containing further results. The rull
details are in Appendix 2, which is a paper £31QJ
submitted for possible puvlication to the Froceedings
of the oyal Society of Zdinbursh.

A smooth graph is a connected graph without
end points. Let v(n,q) be the number of smooth labelled
(n,q) graphs. The e.z.f. of v(n,q,) is

V(Z,Y) = Zi v(n,q)z%Y%/n!
M3
=y the core and mantle m.-thod due to :iddell and to

_ord and Unlenbeck (see [Bj]), I find the functional
equation satisfied by V. In this case, unlike otrer
arplications of the method, the inverse of the auxiliary
e.z.f. introduced can be expressedé in simple terms and
so 1 find an explicit form for V, namely

7(2,Y) = lozft + Z R ™ (qay)sn(n=10) L5y g2y,

m>21
Trom this I can find a partial di:iferential equation

(p.d.e., satisfied by V, namely

Yy : Y3 2 rr= N N
2(1-31)7 (1+1)Vy = 22 (1=5T) (7,572
+ 222 (3-221)7, + 27Y°(1-2Y)°,
I can also find a direct combinitorial proof (or, one
might say, a combinatorial interpretation) of the p.d.e.

I give this in full in Appendix 2. igain, if ws write
oo

vV = 7 Yk

8




where
o)

V. = 2{ v(n,n+k)(ZY)n/n£,
A 'h:\
we can find the differential recurrence formula for Vk
as k¥ increases,

A nunber of asymptotic results follow for v(m,q).
Je write

= = (a/n) = 3 log n - % log log n.

if ,U-? c as n—y @ , we can deduce trivially from the
work of Zrdds and Rényi [BZ] that ths projportion of
labelled (n,q) srarhs which are smooth tends to
exp(-e-zc) as n—m. If mu—>+mw, we can 2.ply the
method of [BS] to the explicit form of V(Z,Y) above

so as to find an asymptotic expansion for v(n,g) and

so also ror the relatively smz2ll number of (n,n) graphs
wi.icn are not smooth for these g, See Theorem 4 of
Appendix 2, This result can also be found, but with
rather more diificulty, by the use of thre
Inclusion-sxclusion “heorem.

I'inally I can aprly the method of [A4] (almost
word for word, if I replace & b- 1-i) to the recurrence
formula for Vk to find an asymptotic approximation to
v(n,n+k) if k¥ = o(n”) ac n e, Vviz.

v(n,n+k)r\/bé(n+3k-1)!/(3k-1)!
(In Appendix 2, we write b, , but, to avoid confusion
with Appendix 1, I use bﬁ‘here). Wie find that
bl e d(3/2)% (e=1)t (2.1)




as k=>® , where d = 0.159155.,.. Hence
v(n, k) A d(3/2)% (k=1 1 (ne3k=171/ (Bk=1)2 (2.2)
and
v(n,n+k) v d(6‘!'l')%nn"'ax"‘lbeZ‘{-n(181(2)"‘K (2.3)

as k,n—» o0 with k = o(n%).

10




A comparison o these results

———teo

3. It rollows eusily from Erdos and Rényi's
work in [B2] that, if p—> +® as n— o , then

v(n,q)~u(n,q)~ Lt/ qt(i=q)! ,

where N = ?n(n-1), i.e. almost all labelled (n,q) graphs
are non-separable and smooth., It is easy to see from
(B2] how this happens. If, on the contrary, we consider
v(n,n+k) and u(ﬁ,n+k) when k = o with n but k = o(n<),
we have, from (1.4) ani (2.2),

v(n,n+k)/u(n,n+x) ~ blé/bk—)d/a1 = 2.71883.,.,. (3.1)

This is puzzling. The sequences fbk{ and {b,} are
defined by the recurrences

Yerq = 3;:(1<+1)1o‘k + 38, (3.2)

where bg = 5/24, bé = 5/16 and

k-1
]31’c = 521_ s(k-s)b_b,

2(k+1)b

and by
2(k+1)by 4 = (3k+2) (kb +3B, ), (3.1)
where b, = 1/12,B2 = 5/48 and

z
B, = s(k-s)b b, __.

szt
These recurrences look similar and they have the very

similar asymptotic solutions (1.3) and (2.1). But it
does not seem possible to transform one into the
otrer nor even to obtain any relation between them,




The two pz ers [39] and [A10] were drafted at
different times of the year and the two recurrences
(3.2) and (3.3) were solved asymptotically in very
different ways (see [A3] and [Aj]). Thus the close
similarity between (1.4) and (2.2) did not strike me
until I started collecting material for this report.

A further point which only strucic me while I was
actually writing the report is that the number 2.,71883...
in (3.1) is very nearly equal to e = 2.71828..., the
base of Napierian logarithms (in fact, it only differs
by 2 parts in 10000)., The obvious conjecture is that
there has been a minor error in calculating 4 or a,

and tiiat the ratio should be exactly e.

I have made no reference to all this in [A9] and
[§1QJ (Appendices 1 and 2) since, at present, I do not
understand it. It seems v: v unlikely that it is no more
tnan a coincidence that v(n,n+k) and u(n,n+k) have
sucn cimilar asymptotic approximations and these in a
constant ratio (probably e) to one another. Clearly we
must recalculate d and a1 (though we had certainly
checked th~ calculations very carefully). But the
relationship between v(n,n+k) and u(m,n+k) for this
range of k is more intriguing.
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Bipartite ~rauhs

4, The rercree for my paper [AQJ first reported
that "most of the results were contained in stron_er
ones proved by Bollobas in a paper to be published in
the Canadian J. Ilath", or. Bollobds was kind enougl to
let me have a preprint of his paper, when it turned out
that the overlap between his results and mine was very
small (and in this small overlap, amusingly enouzh, my
proof was under wider conditions). He had a beautiful
theorem which I had not, namely, an asymptotic formula
for the connectivity of almost all bipartite sraprs on
m labelled red and n lacvelled blue points when m/n is
bsunded above and from zero below as i,n—> 0© ;
in fact, nis result also covers multipartites. On the
other hand, the main interest of my paper was in
unlabelled ;raphs and included the case when m/n—p O,
neis:er or whicli did he touch. (The referee was
presumably relying on his memory of Bollobas's pager.)
“hen I pointed out these differences, ti'e referee
reco. mended my paper for publication and it has been
accepted.A:revised form wrich refers to Bollobds and
includes a further minor result appears as Appendix 3
of this report.

The further result is that, if ¥ = o (m,n) is
the proportion of (m,n) bipartites which are connected,
then (i) if n2™» w as m,n—o with m<n, then
o — e and (ii) if n2™%» @ , then o/ — 0. Ir.
Bollobas says that he knows this result and that he

13




thinks he has seen a published proof by somebody.

A conjecture which suggests itself to me and which see..s
likely, but which I cannot yet prove, is as follows,

If m<n, then  increases with m and decreases as n
increases.

Frofessor Zrdos inforumed me that I.Falasti had
written on connectedness in bipartites. Her paper [BAJ
proves the following (in my notation). let n/n—>A as
n-~3® , where 0<A$ 1 and let Z =[n log n + cn].
Then the provortion of labelled (m,n;z) bipartites
which are connected tends to exp(-ge'c), where g = 1
if A% 1and g=2 if A= 1. This can be deduced
quite simply a. a special case of our result from [A?]
stated in Theorem 6 of Appendix 3. Our theorem also
makes the apparent "discontinuity” of 3 whenm =n
less surprising.

To me the most interesting (and the most
difficult) problems in the enumeration of bipartite
sraphs remain those which occur in the unlabelled
case and especially when m/n-»0 as m,n— co .

I have worked on these this year and think that I begin

to see daylight, but my results are as yet too fra:mentary
to be worth reporting. They give some indication

already, however, that phenomena may occur as interesting
and as surprising as in the case of ordinary random
graphs (see, for example, [B9,B10,B11,B12,A1]).

14




Some further problems

5.1 I am actively engared in investigating the
problems mentioned at the ends of §3 and §4.

5.2. I still have to write up for p-blication
(if possible in a simplified form) the proof of my
results on the behaviour of f%(n,q), the proportion of
unlabelled graphs on n points and q lines which are
‘connected, as q increases. These results were announced
in [BQ,B1Q]; both the nature oI the results and the fact
that so much can be found are surprising. Sut the methods
are elaborate and tne details complicated.

5¢3. Jr. Sheehan and I have not yet found time
to apply further our use of the idea of a ''ghost"
asymptotic expansion nor indeed %o publish an account
of the method.

5’.4.. There remain the possible applications of
the result of §1 to a problem in Statistical mechanics,

15




Appendix 1

“he number of co: nected sparcely-edeel graphs IV

1. .roe non=se.ar.vle ;raphs.

E . I'I ° '-'Jri ght

University of Aberdeen

(Submitted to J. Graph Theory)

Abstract

Th: nnmber'of non=zcparable <rap~s on n lauvelled
points and q lines iz u.n,7)., In ths s:cond parer of
this series I shiowed how to find an excct formula for
u(n,n+x) for ceneral n and successive (small) k. The
mz=thod would sive an asymptotic approximation For fixed k
as n—2>»20, ilere I find an asymptotic approximation to
1/2.

u{n,n+k) when k = o(n ) and an a proximation to

loz u(n,n+k) when k< (1= 5)/(n/3). The problem of findinZ

1/2

an approximation to u(n,q) when (q-n)/n'/“—=) + oo and

(¢/n) = 3 logn - 3 log log n —» — o© is open.




Introduction

t. An (n,q) graph is a simple graph on n
labelled points and q lines (no loops, no multiple lines;.
Such a ~raph is said to be non-separable (or a block or
2=connected) if it is connected and cannot be disconnected
b~ the removal of any one point an. its adjacent lines,
le write u(n,q) for the number of non-separable (n,q}
israphs. The determinationcﬁ‘u(n,q) and, in particular,
of an asymptotic zpproximation for 1argglalmost equal
n and q is related to problems in statistical ~echanics
(see [1],[4,esp. p.141] and [5]).

Ve put Ho= (q/n) = 5 loz n = % log 1los n. =Zrdds
and Réhyi [2] proved that, if ,L-—) C as n-—» oD,
where ¢ i¢ a fixed number, then the proportion of (n,q)
szraphs which are non-separable tends to exp(-e-zc).
It can readily be shown trat, for fixed n, the proportion
increases (at least in the non-strict sense) with q. Hence,
if p— + o0, almost all (n,q) graphs are 2=-connected,
while, if/.a,—-) -~ , almost none are Z-connected.

It is trivial that u(n,q) = O if g< n-1. igain
u(2,1) = 1, vut u(n,n=1) = 0 if n> 2, and u(n,n) = %ftn—1)!}
if n>3, In [7] I found a met od to calculate an exact

formula for u(n,n+k) for successive k2 1; for e:auple

17




et

24u(n,n+1) = (n-3)(n+2)n! (nz3)

The method can be carried out by a computer (see [3,6]

for a similar method), but as the resulting formula has

3k+3 terms, it is not very informative for substantial k.

For bounded k it does yield an asymptotic formula as n— oo,

Here however 1 develo, the method further so as to

obtain the following theorem.

Theorem 1, ZFor all k22,

b, (n+3k-2)  (n-3k°+2k=1) & (3k~1)! u(n,n+k)
< b‘,__(n+3k-1 )L,

wthere b1 = 1/12, b2 = 5/48
%ii X
By = R s(k-s)b b, _o (k2 2)
and
2(k+1)bk+1 = (3k+2)(kbk + SBk) (k2 2),

(1.1)
(1.2)

(1.3)

(1.4)

If 3x°~2k+1>n, the lett-hand inequality in (1.1)

tells us notring new, since obviously u(n,n+k)2

smailer k, however, ne can immediately deduce the

following theorem,

Theorem 2. If 2€k = o(n1/2), hen

u(m,n+k) = b_{(ne3k=-1)1/(3k=1)1}§1 + 0(*/n)},

é.é n.’ mu.

18
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irain, if 2€ k< (1-e fn/3) , vhere g is a

positive numter independent of n, then
log u(n,n+k) = 1ogfbk(n+3k-1)!/(3k-1)f} + 0(1). (1.5)

If Kk<»ow as n— o , Theorem 2 and (1.5) are again
uninformative unless we can "solve" (1.4) asymptotically.
The solution is as follows,

Theorem 3. As k—>

b, = a1(3/2)k(k-1)!{1 + 0", (1.6)

where a, = 0,058538...

Using the well=-:nown approximation to the
factorial of a large number (Lemma 1 of [8], since
t! = (C(t+1)), we obtzain the following two results from

Theorems 2 and 3 and (1.5).

Theorem 4, If k—~>op as n—oo but k = o(n1/2), then
w(n,nek) = a,n™tEEZER g2y Ky L o™ « 0(k?/n)},
where a, = a1ﬁ6n? = 0.25415...

Theorem 5. If k—$m as n—>w , but k< (1-£){/(n/3),

where £ 1is a positive number indepencent of n, tien

log u(n,n+x) = (n+3k-3)loz n - k log (18k2) -n + 2k + 0(1).

19




T e o - e r———————

is we indicate in‘§4, we ca;. obtain a closer
approximation to bk than in (1.6) and so improve the
error term O(K—1) in Theorem 4 at the cost of a little
complication., There remains the problem of finding an

1/2__; oo

asymptotic approximation to u(n,n+k) when k/n
and /L-€>-—-OO o Inis seems diificult and I have no iceas

towaras a solution.

‘ie have nowv to prove Theorems 1 and ).




2. Mundamental lemmas
i 2

e write
V.= Uk(x) = zi. u(n,n+k)xn/n!,
the exponential é:; rating function of u(n,n+k). (The
povwer series converges when lx|< 1, but we do not need
this and in fact treat Uk as a formal series.) Jashes
denote differentiation with respect to x. (e write
¢ = 1=x and, for shortness, ’71{ = XUL + kUk.

Lemma 1. For all k=2, we have

27 w1 = Iy (2.1)
Jhere
J_ = ¢'2;<2{U1‘2 + 22Ul 4 (¢"+1)(7k+7k_1) -2y
s2xg™N (2 + T, ) (2.2)
k-7t "
and o= 2 Uimyo (x22), 1, =0.
sz]

Lemma 1 is immediate if, in [7], we substiitute

' and divide

from (4) in (5), equate coefficients of yk+
throuzn by ¢ . Lemma 1 can be proved by a direct
combinatorial argument, but this is inevitably longer.
In‘£77 we showed that U, can be expressed as a
finite sum of powers of ¢, mainly negative, ifor example,
120, = 70 297 —2¢7 48 -T@ +2¢°  (2.))
and

48U, = 5@ 14¢ + T s 8 = 3T+ 247 19 + 20 - 64, (2.4)
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Po» k> 1, e have
k-2

. -3 =5k+1 Z -3 /

U, = by @ - o @ * u g s (2.5)
£

wiere we now take (2.5) as the derinition o:. the

sequences ibk} and {CP} and have to prove (1.2) and

(1.4).

=1
(0]

.ma 2. The seguence fbk} derined by (2.5)

satisfiss (1.2) and (1.4). Also
c, = (Bk+1)ib, /(5k=1). (2.6)
From (2.3) and (2.4 we s=e t at (1.2) is true
an: trat (2.6) iz true for k = 1 and k = 2. .e
substitute from (2.5) in (2.1) and equate the coefficients
of qb_sk"4. After trivial calculations, in which we use

t.e fact that, for any sequence ﬁit},we have
k-1 k-t k-1
c§ [—dz-qll«-r= go"t)dr"lk-t-: -é-kcé:d,-o/k_t, (2'7)

we obtain (1.4). Again, iz we ejuate the coefficients
of ¢-3k-3 and use (1.4) and (2.7), we obzain

2(3k+2)c,

cpq = 1)y 4 (3c41)ib. + (3u=1) (Bk+t)oy

+ 6(3k+1)éif(x—s)(35-1)bk_scs. (2.8)
$=7

How (1.2), (1.4) and (2.8) tojether rix the value
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of ¢, for all k31, e knov that (2.6) is true for
X = 1 ani k¥ = 2, If we substitute from (2.9; in (2.&j,
the latter reduces to (1.4). Hence (2.6) is true for
211 k21. §

1z

P =) = 3 f(n)x*/n1,

"
we write [7], = £(n). 1f [F} 20 for all n20, we s=y

that F2 0. 3imilarly F,» I, means tiat (71,25, Tor
all n20, since we treat all power ceries in x as formal
rover s:tries and never consiier the value of r for a
particular value of <, no counfusion arises from the
rotation. Theorem 1 follows from Lemma 2 ana the
following lemma, which we h.ve still to prove.

I.enma 3%, .Je have

b,p™7 = (@4 p™) s U, g 0,7 (2.9)
and
b @ - T e U ¢ b @ (k22). (2.10)
23




3. Yroof o. Lemma 3.

(2.9) zollows trivially from (2.3). To deduce
(2.10) for k = 2 from (2.4), it i. enouzh to show that
He*+86 -3¢ +2¢ '~ 19 +200 - 49> 20
and _
(758G +852 g+ 19209464 20,
wnich ~re alco trivial,

To prove iemma 3 by inuvuction on k, w- ‘ave now
only to prove the _ollowing lemma.

ITerma 4, If (2.10) i: true for 2€ k< j, wiere

jz2, then (2.10) i~ tru. zor k = j+1.

e write D = d/4{ and rcmarik first t at tos
operator D + k, agplied to any formal rower series,
multiplies tie coerficient of X by n+k, If k31, it
follows t:at D + x is a bipositive onerator, i.e.

F20<& (ko+k)?P20

for any formal power series ¥, Similarly

FO2F, e (KD40F, » (Ko4k)F,, (3.1)
How
(k)@ ™% = kg™ (1422) (3.2)
24




and so, by (3.1), to prove Jemma 4, it iz enou h to
s:ow t at
; o eiay Y=/ Ay z
285,48 T3 & 2(3+0b 74N (142X)  (3.0)
Tfollows from t:e hypotiesis of locmma 4, where
, R \ ¢ =3k
1{}: (_;J)+k)(b;{—0k¢ )¢
3kbk¢"‘:’1z1 - (k+1)g] + (2x-1)ck¢'3“+1. (3.4)

e now avsume the hypot-esis. ror 1< k£, we have
.- -3k . S =T K- - \ =32
C. & b:{qé 2 , :J}'cs p.mxcp 7 , Ufés 3:2(3%+1 )bl_¢ 7
and, by (3.1) and (3.2),

7, < b @™ N (1420)¢ 3kb. T, (3.5)

Hence

g k1
2T, € 60120877 2 slims) (Tert)ugs,

-S

= 3(3k+2)B, (1+21) ¢ ~OK™>
by (2.7).
/e have tlen J.s.bj, where
3= 2BTITNEGIM b, ¢ 333250 (3100, @p”
+(1+ 89 (1+20) (305 + (3=1)b,_,0°)}
+ 5% T TH142X) (33+2)B, + (33-1)B,_ &7}

and B1 = 0. To prove tu: right-hand inequality in (3.3),

it is enoursh to show that
p . =3 j=-4 . = -
oF < 2(3+1)bj+1qb (1+2X). (3.6)
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~ut, if we use (1.3) and rearran:e, we sec that (\3.90)
is equivalent to

1&1(j+1)bj+1 + };Zjbj + K.j(j-1)bj_1} 0,

where
Ky = 2(142X) @ 2972 0,
K, = X(33+R) @ 97« 4@ 2 0,
Ky = (3-2)X@ T2 (143243x%) + i@ =23 (vax) 2 o,

and the inequality follows.
“o yrove the left-hand inequality in (3.3), we
resuire the following minor leumna,

lerma 5., If F; (1€ i< 6) are_power ceries such tnat

kn] ‘> .
ri,O and
Fy ;bé-F3, F4> F5-¢5,
t-en
- > o Tt - A F - 7'1 ;‘\ . .
If Xyse0es¥y are non-ne-ative nuiibers and ii
Xy 2 Xy=Xs and Xy 2 xs-x6,then
XXy 2 XpXg = XXg —XpXge (3.8)
e may now _ut
x; = [F], (1¢i€3), =% = (7], (45i€6)
by the hypothesis oi lLemma 5., Summing eaclh side of {(34:-)
from s = O to s
7 [0 - PP - iy
G1Fdn 2 [Fo¥s - FsPs Fo%6 )
for all n20, that is (3.7). #
- 26
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By the hypothesis of Lemma 4, for 2<£ k< j, we have

-5k -3k +1 ! 3.1 -3k
Ut @K - @, Ul 2kn, §30 77 - (Bket)g 7,

U4 3 3x(3ke 1), (@ TP - xgTE ), (3.9)
=3 ~3i -3k
Ny = EUL + kU 2 5kby { et +1)¢3“}+k¢ "{(’o‘kﬁ)@k—c*}
> 3ab, § @ ML (k) TN, (3.10)

since
c. = k(3x+1)b, /(3k=1) < (3k+1)b,
b (2.,8), ~sain
-3 - -1 = -
U, 2b (@77 - 297" =297, m 230,( 7 - 2977,
waieh is (3.10) for k = 1, and
w > ap, (3xp T —¢70).
ence, if 2£ k€ j=1, by Iemma 5,
u” » 9(3ka )i (3-k)b, 5, {77973 - (1) ~3372 (5.11)
2 =i 2 70127 j=k y
Asain, by Lemma 5,
U1”7j_1 > 12(j-1)b1bj_1¢—33-3(3li - 335¢ - @ 2)
. . -3 j=3 . -2j=2
236(3-1)b1bj_1f¢ T2 - (je)@ T },
which is (3.11) with k = 1., Hence,by (3.11) amel (i-7?/
s ~3j=3 N ,
21;2 9(3j+2)B,¢ 1 - G+1igd (3.12)
Clearly, bv (2.2),
--2 -I} —2 ~.‘r2 -3 -'2 .r ""1 A
Jj ZAqub + (¢ +¢ )"7:+2-\(} ;3-2‘73
and SO, L. (3.9),(3010),(3012) and (305),
: -3 3=1
Ty 2, =230 =

217




—————————— + = vy 3

where

Ky@™*s 3505408, (1-ja)-0) 1 3 6193 (1-#)
+9(3i+VB f1-f+)0} - 4G ¢

Using (1.4) and simplifying, we find that
X{£, = 6(j+1)bj+11-15 + jbj;{K6 pY 6(j+1)bj+1k-5
. . -3 =4

wrere g = £1 - (3+1)'¢} (1-¢ )¢ 33’“ and
= 3(332+j-1)¢'33'2 + (33-1)¢"3‘1 > 0,

To prove that‘%j)ZR. , it iz tren enouzh by (3.4)

j+1
to show that

(D8, Ko 25, 975
- , _3,-2
> §(j+)4, 1)} + 224 VLI
t-at is .
[3(;3\»1)213j+1 - (23t)e, JP 22 2 Z;qi""’, (313)

NOW, by (2.6) andi (1.4 ]
3(j+1)zbj+1 - (2;]+1)cj+1 = (j+1)bj+1(332*45+25/(33+2)

But 77972 » ¢ 29712 0 ana (3.13) follous.l
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4, Proof of Theorem 3: t.e behaviour of tk.

If we .Titz 3, = 1, 3, = 2/3 and

2:+1 1=k

5 = 2 3 7 kb, (k21),

£+1
we 1ind that (1.2) and (1.4) «re equivalent to

- > S, =

= (k- )Z Ss5%+1-s (£21), “1 1

This is ths pa rtlcular case (b = ~.) or tne more .eneral

recurrence formula studied in LQ]. Theorem 2 of [9] gives
uz Theoresm 3 ol the present puper, computation suvplying

t~e value oT a,. e can in fact deduce trat

= 4, Z—") (k-1)! f’ T gk stk[k-d—.O(—iﬂT)f

=4 (%)k[é""ol— C)l (k-2)! - ;25 G-3! - 0(& 4),)}

for lar:e k (or indeeqlfurther terms of the aszymptotic
expansion). '
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Appendix 2

_n-meration of szooth labelled graphs

B.bhi.iright
Hathematics Department, University of Aberdeen

(Submitted to Iroc. Roy. Soc. Zdinburgh A)

synopsis

An (n,q) graph is a graph on n labelled ioints
ani q lines without loops or multiple lines. ..e write
v(n,q) for tne numcer of smooth (n,q) graphs, i.=.
connacted grap.:s without end points, and
V = V(2,Y) =’§£ v(n,q)2%Y%/n! for the exponential
gencrating ruAZtion of v(n,q). e use the 1i dell 'core
and mantle" method to rind an explicit ferm for V (not,
as usual with this method, only a functional equation).
Yrom this we deduce a partial differential equation
satisfied by V. /e interpret this equation in purely
conuinatorial terms. /e write Vi = S v(n,n+k)x"/n! and

N
find a recurrence foruula for V.. for successive k. Je

use trese and other results to find an asymptotic
expansion for v(n,q) as n— o wneu

(q/n) = % oz n - 3 log lor n—p 4+ QO and an
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asymptotic approximation to v(m,n+k) when 0<k = o(n1/2)

and to los v(n,n+k) when k<(n/3)1/2(1-g )e




1. Introduction

in (n,q) sraph is a gzrapr on n labelled points and
qQ lines without loops or multiple lines. A smoot: graph
is a connected grarh on 3 or more jpoints without end
points. We write N = zn(n-1) and B(h,k) = h!/{k!(h=k)},
so that B(N,q) is the number of (n,q, graphs. Hence the

exponential generating function (e.g.f.) of this number is

R = R(Z,Y) =1 + ?_ 22 (1+7) Y /ne

ms

Azain f(n,q) is the number of connecied (n,q) gra.hs
and v(n,q) the number of these w:ich are suwooth; the

respective e.g.f.s are
o N

¥o= R(4,Y) = Z Z f(n,q)znyq/n!
=1

and

N
0
V(s,Y) = Z Z v(n,q)s™v3/n!

A result due to Gilbert [4] tells us that

<4
]

R =e’, (1.1)
ie use t1e "core and mantle" .ethod cue to Riddell
[8] and Ford and Uhlenbeck [3] to find a functional
equation satisfied by V. i simple account of this

method is ziven in [6] rr.10,11, ~here it is used to find




a functional equation satisfied b the e.g.f. of
2-connected labelled raphs. I{ has been :odified by
~alsh [3] to find a more comilicated equation satisfied
0" the e, .f., of 3-connected labelled grarhs. Unlike the
situation in these applications, nowever, the functional
equation in the case of smooth ¥raphs can be solved

to Zind an explicit form for V., This is because the
rerticular auxiliary e.g.f. introduced (that for rooted
trees,; haz a sinple inverse. I s.:all thus prove tre

1ollowin; theorem.

7
oy

Theorem 1: V = log R(se™2%,Y) - 2 + 32°%.
Jubsequently I sive the various consequences
including asymrtotic expansions of or a:proximations tc

v(n,q), wich can be deduced from this or found
otrerwise. .here these can be found by ethods already
publiished in other applications, I give reference$

to tnhese methods rathrer than re;etitive proufs.
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2. Irco: or Ineorem 1
Je write
0,
6(x) = S o MYny (2.1}
Th- e.,g.f. for éggked labelled trees is then g = G(ZY)/Y.
Again the inverse of G({) is ’
X = ge™C, (2.2)
This result is well known (see [?} or [1{) for example);
the simplest proof consists of defininy G ac the solution
o. (2.2) wrich vanishes with X and using Cauchy's theorem
ir an obtvious way to prove (2.1). fe remark that thre
ceries in (2.1) conver-es for jX‘( e-1, unlixe the
series :or £ anu V which are formal. It follows ~hat
z = ge8Y, (2.3)
Consider a connected (n,c) sraph whici is not a
tree, so that gq>n. /e pluck .i:e graph by removing each
enut—-yoin¢ ana its adjacent line, continuing the process
until we are left with a smooth sraph. .Je can restore
tre original graph oy rootin an appropriate tree (which
may be the single point at the root; at each point
on the smoo a [ rzph. It follows tihat

P(2,Y) = i_(20)/Y + V(g,Y), (2.4)

where J_1(ZY)/Y ic the e.g.f. for the number of
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(unrooted) labelled trees, so trat

oo
(%) = 2 a"%x/ni
met
Jormula (8) of [11] sives us 7_, = G - 162

w_1(zy) = gf - %g2Y2.

, 80 that

Ience, by (2.2) «nd (2.4), we have
Fge™BY,Y) = g - 3g°Y + V(g,Y).

Since Z has now dizappeared, we may replace g by 4

and we have
-ZY -2

V(s,Y) = F(le ,Y) = 4 + 22°Y.

X

1 Theorem 1 follows by (1.1).




|
|

3. Fartial differential equation satisfied by V.

ie write
oo
Sj - ZE: Zne-nZY(1+Y)N/(n-j)!,
<y
so that
Sy = R(4e™2L,Y) = exp(V 4+ 2 - 22°Y)

ty Theor:m 1. Lifferentiating partially with respect

to Z (twice) and with respect to Y, we have
ZSO(VZ + 1 - 2Y) = S1(1-ZY),

2250fV,, = T + (V+1-20)%} = 5, f(1-21)% = 1] + 5,(4-2¥)%,

(Vy = 522)S, = =55, + 35,(1+1)7".

slininating 50, S1 and 82, we have the following
theorem,

Theorem 2. The partial differential equation

satisried by V is ‘

2(1=4Y)° (1+Y)Vy =

- 22(1-ZY)(VZZ+V;) + z3Y2(3-2zY)VZ + 22Y%(1-2Y)%  (3.1)
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4., Direct comoinatorial proof of Theorem 2

It is of some interest to give a direct
combinatorial interpretation or proof of Theorem 2.

To do so, e write (3.1) in t-e rorm

VY = Q1 + Q2 + Q3 + Q4 + Q5’ (4-1)
where
B2, o=t , o=l -
Q, = 2227 (1-an)™, Q, = v, (1-21)7" f(1-2v) 21221},
It r2 7 —2 N '.‘72
3 = 325V5(1-31) 78, g, = 520V, - YV,

o = 58°V,, {(1-20)7% - 4} .

&

Je take the set @  of all smooth (n,q+1) craphs
in ecc: of which cne line is chosen as s,ecial. Since
this ci.oice can be iade in q+1 ways in each graph, w=s
have ]®} = (q+1)v(r,q+1). 'je separate the set 3
into five mutually exclusive suy sets O}L (1€ i< 5).
The cet 0% contains all the members of 03 in which
no point is of degree greater than 2, i.e. every graph
which consists of a single circuit. sach of tle
remaining members of 03 ras at least one pcint of
dezree greater tnan 2, It follows that, in each of
these graphs, the srecial line either velongs to a

suspended circuit (i.e, a circuit all of whose points




except one are of de ree 2) or to a suspended path

(i.e. 2 path of length one or more, all or whose internal
points, i: any, are of degree 2 an. each of w..ose
different end-points is of degree greater than 2).
If the special line belongs to a suspended circuit,
we put the zraph in sub-set 632 » I the special line
belongs to a suspended path anu if its remova
disconnects the jraph, we put the -rarh in set 6?3.
In each of the remaining graphs, the removal of the
special line leaves the graph connected; if the
suspended pati: is of lengéQ? i.e. consists of the
special line alone, we put the zraph in sul-set 034,
if not, in sub-set 63 p

Low considerth: collection ¥ of (n,q, graphs
foried br removing the special line from each of
tue sraphs in a . (A collection, not a set, since
in general some lines will occur more than once).
The five sub-cnllections %a (1€ i€ 5) are formed in

ti:e same way from the sub-sets 03¢. W= have

€] =|B] = (a+1)v(n,a+1)

and so the e.g.f. of ’!2’ is Vy.
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The fi.ure s+ows a typical m:mber of each of the
%%,Emn sraded areas rerresent sm.oth sub-_rapns anu
the broken line the ‘'removel" line., The grarhs in %ﬁ
are singrle yaths with n points (nz 3) and q = n-1
lines; herce l%%]= 3(n!) and th e.z.f. of ['e,‘ is

g - vt -
mxy

The raphs in Yfg are connected and —ave all their
points of de.'ree not lesz than 2; i.e. they are swooth
(nyq) sraphs. wach such grapi czn be obtained by the
removal of any one of lL-q lines AB, each from an
approprizte (n,q+1) graph; hence I@%! = (N-q)v(n,q)

2. o
Z /L;Z - YVY = ‘240

The zrapiis in {%}I consist of a smooth grapi with

[ Bt

-

an. the e.g.f. of f%?ki is

two of itS(joined by a broken suspended path of orizinal

lenzth greater than one. The e.g.f. of the nuwmber of

2

smooth graphs with two distinguished points is 347V

Z2°
The broken suspended path has its two end points
unlabelled for counting purroses and one line missingj

the number of sucn paths is (n+1)! where n2 1, and the

corresrondine e.g.f. is

S (n1)2%Y? = (1-2Y)72 - 1,

m21
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-ence the e.g.f., of }fil is ;5, by the multiplication
property of e.z.f.s (see [6]).

‘saen graph in %G consists of two smooth sub-grapl.s
each witi. a distinguished point (4,B in the figure, anu
a broken suspended path, of length 1 &¢r more, each of
whose end-points are, for counting purposes, unlabelled.
The e.g.f. of the number of smooth zraphs each with a
distinsuishes point is 4V, ana the e.g.f. of the broken
suspendzd path is 5 (n+1)z™" = (1-ZY)-2. The e.c.f.
of [%%f is theref;;:oQB, the 7 occurring since otnerwise
each grapn of %% is courted twice.

Jach graph in %Zz consists ot a smooth sraph
with a distinsuished lubelled roint C, a suspended
path C5 (in whieh C is unlzbelled, all other points are
.labelled ana C and D may coincide) and a broken
suspended circuit in which D is unlabelled. The

-1 ana

corresponding e.g.f.s are IV, (1=2Y)

L 5 (a2 = 3{(1-2Y)7% - 1 - 227}
m22
respectively. -ence the e.rg.f. of I{;fis Qz. This

completes the dircez combinatorial proof of (3.1) in

the form (4.1).
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5. sparsely-edged siootin graphs

If e put X = Y and
v, = Z: v(n,n+k)X%/n!,

m23
we have V = S VkYk. Substituing in (%.1) and

k2o K+1

equating coefficients of Y , we find that

2(1=2)> (1) v (e 1)V )
= K2(1=)V) = (2-6K43X2) XV = 2(1-4)7KV,
2010y &
v 040 2 Vv, (5.1)

w.-re dashes d.note differentiation with res:ect to x«.
:ince v(n,n) = %f(n-1)”, we have
Vy = 35 &%m = ~2flog (1-%; + X + 7).
Ny

Jith this, we can use the obvious inte, ration of (5.1)

to obtain a formula for V in terms of an integr 1

k+1
involving V, (04 h€ k), i.e, a recurrence formula
satisfied by V, for succeusive k. fowever in [32] 1
dzscribe an alternative method of determining Vk as a

finite sum of powers of ¢ = 1-X, viz,

2
_ =3 =3k+1 z s \ )
Vk = bk¢ - °;<¢ + A cks¢ (3«(21/} (502)
z2-3ktd
where th- C, g are those given in Theorem 4 of [1ﬂ

and bk = ck,-BK’ Cy = -ck,1-3k‘ These can b= calecvlated

by computer Db the methods described in [5] and [11] and,
as shown in [15], & = 3"2""(lr-1)! d,, where 4 is

the sequernca describec in rheors: 5 bolow,
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0. Asymptotic approximations to v(n,q)

Ve surpose first that
H =(q/n) - 2 logn - % log logn —» c (6.1)
as n~»© . Then Zrdds and Rényi proves [2] tnat t.e
proportion of (n,q) graphs in wnich the minimum degree

is 2 tends to

D=1 - exp(-e—zc)

and t:at the proportion in which the mini.iim degree is
3 t:nds to 0. 4gain th. same authors prove:d [1] that,
if (6.1) is true, the proportion of (n,q) graphs which
are connected tends to 1. The following treorem is
immediate.

Theorem 3, If (6.1) is true, t..en the proportion

of (n,q) graphs which are smooth tends to D as n— ®,
trat is

v(n,q)/R(N,q) —> D.

Next let us suppose tiat ﬁb—')fd) as n—p oo
srom Theorem 1, we have
1 + Ei éne_nZY(1+Y)N/nl

mn=1
Je can then use the method of [10] to find an asymptotic

2

exp(V+2-32°Y)

expansion for v(n,q). The work is cuisbrous in detail,
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but rollows t .at of [1@] i:. a tairliy obvious manner,
‘e write N, = #(n-r)(n-r=1). The result we sv.ain is
as Jollows.
‘heorem 4, If M+ as n—po , then
v(n,a) = 3(ki,q) = nfB(l,q)+(n=1)E(,q-1)}
+ 3(n,2) }3(kiy»a)+(2n~3)B(I, , q=1)+(u-2)“B(N,,q-2}}
- B(M,3){2(ii5,q)+3(n=2)3(75,a~1)+3(n=2 (n-3)B(1f5,0-2)
+ ((0=3)7+1)3(75,9-3)}
+ ufn"5(14,q-4)}
iin sufficient labour this expansion can be
extended to any desirewu numvber of terms. The result

cin also be found by the use of the Inclusion--xclusion

theorem, bput no mors easily.
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7. Asyuptotic approximation to v(n,n+k).

‘e can also find an asymnptotic approximation to
v(n,n+k) when 1<k = o(n1/2). IT e replace @ = 1-G in
[133 by <}5 = 1=X, the method is almost word-for-word
identical with t:at used in [13] for f(n,n+x;. (Cnly the
comraratively trivial Lemma 10 requires some alteration

and §5 of [13] is not required.) Je deuuce the following

t .eoren,
i 1/2‘
h.orem 5. If 1¢k = 0(n' /%), then

v(n,nek) = a4, (3/2) 1) 3 =Dkl {1 + Pnm T,

wiere
k-1
Ay =8y = 5/50, d; 4 = &
in [1)] we snowed that 4,0 tends to a limit 4 as
i~ © and (by coaputing; that & = 0.159155...
Using Stirling:'s formula, we finu a furt.er ti.eorem.

rneorem 6. If k@ usn—P ® an k = o(n1/2),
t.en,

v(n,n+x) = a(18ki)_ke2k§nnn+3k—%[1 + O(k-1) + O(kzn-1)};
where a = d(6m)% = 0.620986...

.@ can also prove the tollpwing.
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1
heorem 7. If X=3a7 as n—w and k< (Ln)*(1-£),

where & iz 2 positive nunber independent of k an< n,

then

log v(n,n+k) = (n+3<-_jlog n + 2x~n - k log(1o:2) + 0(1).
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Appendix 3 -

The k-connectedness of bipartite grarhs

EJldrignt

(To aypear in J. London Hath. 5oc,;

Swimary
‘e congsider bipartite graphs on m red points and
n blue points, where m<£n, and prove that, for 'any
fixed k, almost all such graphs (labelled or unlabelled)
are k-connected as n—9o0 , provided m>C log n, where
C depen's on k. If Tmn is the number o: such unlabelled
~rophs, we show that TmnnJZmn/(mln!). If Tén 13 the humber

of such unlabelled graphs with the colours removed, then

.‘~ . : / Ty 2

T T if m<n and Tnﬁ"’%Tnn‘ Je deduce that almost
all bipartite graphs on p points in all, whether
labelled or unlabelled, are k-connected and so prove

a conjecture of Harary and Robinson.

The research reported hers has been supported in
part by the EZurojean Research Office of the United

states Army.
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1. Introduction

In 2 recent paper [5] Harary and =obinson
conjecture that almost all connected labelled bipartite
sZraphs are 2-cunnected., Here I prove a number of results,
of one of which the conjecture is an immediate corollary.
Dr. Bollob4is has very kindly shown me a paper of his [1]
which also includes a theorem of which the same
conjecture is an immediate corollary. The overlarp
betwszen his paper and this one is however small.

Throushout we take k a fixed positive integer and
write C for a suitable positive number (not always the
same at each occurrence) which may depend on k, but not
on p,m or n. The notation C( ) ando( ) refers to tie
passage of p or n to infinity (as tre case may be) and
the constants implied are of type C. ‘e say that almost
all grarhs of a particular kind have a property if the
proportion wihiich have that property tenas to 1 as p—» co
or as n—>»g , Harary and Robinson's conjecture follows
at once from the following treorem.

Theorcm 1. Almost all labelled (or unlabelled)

bipartite graphs on p points are k-connected os p—> -

'e first consider labelled (m,n) graphs, i.e.
labvelled bipartite srapns on m red points anu n blue

points, i.e. the red points are labelled Tyseeey Tp
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and the blue points b1,..., bn' Each red point may
be joined by just one line to each blue point or not so
joined; no two points of tre saue colour are joined. The

2mn

number of labelled (m,n) graphs is clearly Fon =
4 We take m = m(n)g n.

Theorem 2. If m>C log n, almost all labelled (m,n)

grapnhs are k-connected as n-—y 0.

Let Tmn be the number of unlabelled bipartite zraphs
on m red points and n blue points.
Theorem 3. If m>C log n, then
mn
T = [2"/(mint)] {1+ o(1)].

Thoorem 4, If m>C log n, almest ail bicoloured

unlabelled (m,n) -raphs are k-connected.

Theorem 3 implies that, if m>C log n, almost all
bicoloured (m,n) graphs, labelled or unlabelled, have
only the trivial automorphism. Theorem 4 follows from
Theorems 2 and 3.

Wwhat is true if we remove the colours from the
unlabelled graphs? Some of the resulting disconnected
(myn) graphs may then be isomorphic to one another but,
in view of Theorem 4 (with k=1) there are almost none

of these. If m«<n, no two of the connected uncoloured
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graphs are isomorphic to one another, for a connected
bipartite graph can only be bicoloured in one way (a art
from an interchange of the two colours, impossible here
since the m points are originally coloured red). This
argument fails, of course, if m = n. Let Tén be the
number of non-isomorphic uncoloured unlabelled (m,n)
graphs, We have proved the first part of the following
theorem.,

Theorem 5. If m>C log n, then

1/ ~ 2™/(ain?) (m¢n); 1)~ 2% (a2,

The second part is proved in§ 4,

There is a sense in which our treorems so far
are "vweak", since they refer to almost all (i:,n) graphs,
make no reference to the number of lines and do not find
the "threshold" for connectedness in the sense of [3]
or the asymptotic numbers of unlabelled (m,n;E) graghs
(4 being the number of lines) as in[ﬁ,i] for ordinary
graphs. So far as simple connectedness of labelled
bipartite sraphs is concerned, we have the following

theorem (which I do not prove here).
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Thevrem 6. Let mgn,

-

E = nfm - (m--'{)e-(lo'3 n)/m} (1.1)

and m—ye and y—> ¢ as n—w . If {(n-n) log nj /37,

then the proportion of labelled (m,n:i) graphs which

are connected tendgﬂgg_exp{-e'c(1+e'b)3. 1f

f(n-m) log n}/n—»00 , then_this proportion tends to

exp(-e~C).

Professors klee and Larman and I hope to publish
the proof of Tieorem 6 in a joint paper. This proof is
distinctly more complicated than that of Theorem 2 of the
pr:sent paper. It is interesting to note that, if m/log n
is bounded above as n—»ow , then £ in (1.1) is not o(umn),
whereas the condition that & = o(n2) plays an essential
role in.[Z].

Let o = ol (m,n) be the proportion of labelled
(m,n) graphs which are connected. we can deduce from
Theorem 6 or prove directly that, if n2 "~ w as m,n —>

W and correspondingly,

with m<n, then ol (m,n)—>e”
if 2™ — o |, then od —> 0. (Dr. Bollobds tells
mz that he knew t*is anu that he thinks that he has
seen a published proof.) The result shows that the

condition m>C log n in Theorzm 2, while not best

posuible, is nearly so.




There see:'s to be no serious obstacle to extending
tihe methods of [43 on k=-connectedness to labelled
bipartite (m,n;3) graphs, though the extra variable m
certainly introduces complication. The extension orf
[§,7J (and especially [j], the methods of which are
thermselves unattractively complicated; to the tipartite
case may be more troublesome and so far 1 have only
partial results, Thus the point of the present paper is
that, while the theorems are probably not best possible,
the rroofs are relatively simple and strai htforward.

In what followis we write B(h,x) = al/fk!(h=k)t} .




2., I'roof of Theorem 2

If an (m,n) graph is not k-connected, there are

£=1 points, say r red and s blue, where r+s = k-1,
such that, if these pcints and all lines adjacent to them
are removed, we are left with an (x,y) graph and an
(m-r-x,n-s-y) grarh, unconnected to one another. There
are therefore [l = x(n=s-y) + y(m=-r-x) lines which cannot
occur in the original zraph, The number of such original
lavelled graphs is tlierefore at most

B(m,r)B(n,s)E(B(rvi,x)B(N,y)2mn'A , (2.1)

where I/ denotes summation over all x,y such tlat

O$ x¢ bk = mer, OLy4¢ N = n-g, 1< x+y< M+N=-1, .e can

clearly choose x £ iM, but not then choose y< zN.
However, if y > %N, write y'= N=-y< £N; we huve
N (x,y) = x(V=y) + y(ri=x) = xN + y(ii-2x)
3 xN + y' (M-2x) = A (x,y/).

Hence the number (2.1) is at most

2B(m,r)B(n,s) Z"B(I'I,x)B(N,y)Zmn-A(x’y) ’
~‘here 2{” denotes summation over all x,y such that
0<$x< 2M, 0€ y€ 4N, 1< x+y. The proportion of such graphs
among all labelled (m,n) graphs is therefore at most

= 2B(m.r)B(n.s)E"B(x-i,x)B(N,y)2"1(x»3’) < cz"e-ﬂ(x.ir)/(x,y!),
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. where

A(x’y) = %(1§X+l;y) lOg 2 - (r+x)log m - (S+“,’)10[; n
> 2(m - C log n)(x+y),

1 proviced m>C lo . n. ilence ‘flrs = 0(1) and Theorem 2

follows.




F—

L_—_tﬂ.& i

3. Proof of Theorem 3: the unlabelled case

By the so-callea (see (7}) Burnside Lemma we have
tnt —
mini? = F PZVF(()” ) (3.1
where r((’ g~) is the number of labelled (m, n) grarhs

invariant urder the pe*mutatlon (o of +he labels TiseeesTh

and the pgrmutation ¢~ of the labels b1,...,b and(sg
denotes summation over all and all o~ , except the
pair in which P g~= I, the identity.

The permutation F> can be expressed uniquely as a
product of disjoint cycles, of which pj are of length j;
similarly < is a product of disjoint cycles, of wiich

q are of lengtrn j. #We have

m =% jps ?f.:iq
Let Tv be the correspondlng permutatlon of the lines
joining the fri} to the fbi} and P, the number of cycles
in 7 of length j. Then

mn = S JE e
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M T = p——— e Ay

Consiier those @ in which just a of tae r; are

changed, so that p, = m-a. There are at most B(m,a)a!< n®

such {) « Similarly there are at most nb rermutations o
in which q = n-b. For such C and &, we have

P, = (m=a)(n=-b).
The number of labclled (m,n) graphns invariant under any
suen pair {7 y O~ is ZZPJ ySince the j lines affected by

any j-cycle of 7v are either all present or all absent., Now

.
z J

by + S k. £P, + 3£ 3P, = (P, + mn)
LI 1 pd 1

= mn ~ %an - +bm + %ab.
From (3.1), we have
P,
min!T__ = 2™ 4 7, J = 2 T, (3.2)
mn ov
#e remark that a = O or 222 and b = 0 or b2 2. Then
Jo—mn < s np=Fan | < nbz-z-bm + 2 o nbz—s(ambm-ab?
a1 622 o2 631
ow, if 24 a< m and 24 b< n,

an + bm - ab > %(an +bm)

and so Theorem 3 follows if we can show that

S 2780 o(1), S nP2ibm L (1),
a2l ¢22
These are clearly true if
m log 2 - 4 log n —> @ (3.3)

as n-Ym , i.e. iIf m>C log n for an appropriate C.
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4, Proof of tne second p.rt of Theorem 5

As before, we may disregard the disconnected graphs.
Consider a connected bicoloure;iiabelled (n,n) graph G1.
Recolour the red points blue and the original blue points
red and so obtain a graph G2. If G1 and G2 are not
isomorphic to one another (i.e. isomorphic red to red
and blus to blue), we say trat they are a reciprocal pair.
If trey are isomorphic to one another in this sense, we
say t:.at G1 is self-reciprocal. If then we remove the
colours from every connected unlabelled (n,n) graph,
we have to diccard one of every pair of reciprocal graphs to
obtain the coalizci=d members of t.ie collection enumerated
by Tén. The following lemma suffices to prove that
Tén = %Tnn{1 + 0(1)}, from which the second part
of Theorem 5 follows at once.

lemma, If S is the set of self-reciprocal bicoloured

. 2

labelled (n,n) graphs, then !S] = o(2% ).

Consider the self-reciprocal bicoloured labelled
(n,n) graph G. It has an automorphism i1 (red to blue,
blus to red) which maps TyseeesTy On to ’T}(b1,...,bn),
where 171 is a permutation of the suffixes 1,2,...,n,
and by,...,b on to ‘Té(r1,...,rn). Hence ‘f1(b1,...,bn)
is mapped on to ‘T2‘T1(r1,...,rn). Two cases arise. If
7’27'1 is not the identity, we repeat the mapping .
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Then, under the mapping ii , Tysessyl), Maps on to

{2.T1(r19000,rn) and b1’00',bn on to -T1 —r2(b1’...,bn),

fience the raph G is invariant under the permutation
(7= '7% T1 of the suffixes of the Ty and ¢ =7T,T, of
the suffixes of the bi‘ Thus G is invariant under
the non-identity permutation (3 0f the labels of the
red points and the permutation g~ (also non~identity)
of the label: of the blue points. It is therefore one
ot the bicoloured labelled (n,n) gravhs counted (perhaps
more than once) in the sum J of (3.2), which is o(2n?).
Now consider trose G for which 75 7} =,I, These have

a red on blue, blue on red automorphism in wnich r; maps

onto b and b_,., on to r,. LThere e n! pos:ible chnoices
_1;(‘) n ‘)’1(1.) i ar FO

ol ‘71. Hence there are at most n!D graphs G of tais type,
where D is tho number of graphs G in which r; maps onto
bi and bi onto Ty for every i. In such a graph, ry is

(or is not) joined to bi and the line ribj is present

if and only if the line birj is present. Hence there is

a (1,1) correspondence between these G and the graphs

(not necessarily bipartite) on n points with a possible
n(n+1)
1

loop at each point. It follows that D = 2~ S0

that n!D = o(2" )., The lemma is immediate.
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5. Froof o0: Theor.m 1

Let jp be tiie numnber of bipartite uncolourzd graphs

on p labelled points and, as before, Emr = 2

mn the number

07 bipartite graphs on m red points lanelled TysecesT

and n blue pcints labelled b1""’bn‘ ‘e remove the

r stricition that m¢n, Clearly

$-1
= 3 Z B(p,m)#

Fv
p wed m, p-m*

if fp anl f are the corresponding numbers of laballed

linvel
.z=connected graphs, we have

£o= an{1 + o(1)}

by Theorem 2, provided min f{u,n) > C log max (m,n,. But

m< Bl I mgClap
S CZE‘(1+C log p) = O(F[%p],f—[f;ﬂ) = O(F})

and 30 we have

p-1
fp = -&21 B(p,r:x‘,fm,}:_m = FP{1 + 0(1)} .
ms

This is the labelled case of Theorem 1.




If ©_ is 1ie number of unlabe.led bicoloured

Le)

by
bipartite grarhs on p toints, we have

’\-‘!

.'-L\ = 'I_‘
¢ Z m, p-m

m=z=1
and we can prove that almost all the Tp graphs are

k-connected as abvove, Similarly, with minor variationms,

for unlabelled uncoloured bipartite graphs.
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